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NOTICES

When Government drawings, specifications, or other data are used
for any purpose other than in connection with a definitely related Gov-
ernment procurement operation, the United States Government thereby
incurs no responsibility nor any obligation whatsoever, and the fact that
the Government may have formulated, furnished, or in any way supplied
the said drawings, specifications, or other data, is not to be regarded by
implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to
manufacture, use, or sell any patented invention that may in any way be
related thereto.

The Governmenthas the right to reproduce, use, and distribute this
report for governmental purposes in accordance with the contract under
which the report was produced. To protect the proprietary interests of
the contractor and to avoid jeopardy of its obligations to the Government,
the report may not be released for non-governmental use such as might
constitute general publication without the express prior consent of The
Ohio State University Research Foundation,

Qualified requesters may obtain copies of this report from the
Defense Documentation Center, Cameron Station, Alexandria, Virginia,
Department of Defense contractors must be established for DDC serv-
ices, or have their ''need-to-know' certified by the cognizant military
agency of their project or contract,
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ABSTRACT

A method for computing the radiation patterns of parallel-plate
waveguide apertures is presented. This method, which is based on
edge diffraction theory, employs the Higher-Order Diffraction Con-
cept. This concept permits the summation of all orders of diffraction
in closed form, Calculated waveguide patterns are compared with
those obtained by using the first three orders of diffraction.

This method is also applicable to other types of diffracting
structures, Computations obtained by this method are, in general,
quite accurate. However, the assumption is made that multiple dif-
fractions are the same as those of isotropic line sources; this approxi-
mation leads to inaccurate results in some cases,
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HIGHER-ORDER DIFFRACTION CONCEPT APPLIED
TO PARALLEL-PLATE WAVEGUIDE PATTERNS

L INTRODUCTION

Edge-diffraction theory has been applied to analyze diffraction
by antenna apertures[l]. In this approach a singly diffracted wave
emanates from each edge that is illuminated by the primary source.
The singly diffracted waves again diffract from the various edges pro-
ducing doubly diffracted waves. The process continues to higher and
higher orders of diffraction.

In general multiple diffraction effects are quite significant,
Previously, analyses were performed by computing the lowest orders
of diffraction. Thus calculation of diffraction of a certain order was
an iterative process in which all lower orders of diffraction were cal-
culated. The iterative process is useful because the magnitude of dif-
fraction diminishes rapidly with increasing order., However, it was
discovered that all orders of diffraction can be included in calculations
in a straightforward manner. The object of this report is to describe
the concept of including all orders of diffraction which is denoted the
'""Higher-Order Diffraction Concept''. This concept was subsequently
found to be an application of the Self-Consistent Procedure which is
used in scattering theory. The Higher-Order Diffraction Concept is
illustrated by its application to the analysis of parallel-plate waveguide
radiation patterns. The analysis of parallel-plate guide patterns by the
iterative process is given in Refs. 2 and 3, in which the first three orders
of diffraction are included in computations, The Higher-Order Diffraction
Concept simplifies the formulation of solutions to diffraction problems
and increases the accuracy of computations,

II1. ANALYSIS OF WAVEGUIDE PATTERNS

The aperture of a parallel-plate waveguide is shown in Fig. 1.
The guide angle, Og, between the edges of the waveguide walls may be
adjusted for various mounting configurations, as may the wedge angles,
WAl and WA2, Only the TEM waveguide mode is considered in this
report. In the TEM mode an incident plane wave propagates parallel to
the axis of the guide with polarization perpendicular to the guide walls
as shown in Fig. 1.



Fig. 1. TEM mode in a general parallel-plate waveguide.

The diffraction from the guide aperture is treated by superposing
the diffracted waves from each of the wedges. The diffraction from
each wedge is expressed in terms of the wedge diffraction function vgll,
2,3,4]. The computer subroutine used to calculate vy is given in

Appendix I. The incident plane wave on edge 1 gives rise to a diffracted
wave

(1) HDl(r,e) = VB(I‘, Tl'+e) »

\.Jvhere r is the distance from the edge and 6 is defined in Fig. 1. Hp)
is the value of the perpendicular component of the field (magnetic field

in this casge) for a unit-amplitude incident field. At large distances
from the edge the propagation factor '
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is separable from vp. Thus the singly diffracted rays may be written
as

1 Ly 1
2 . 6) = —— in ——
(2) RDl( ) ny sin ny ( m m+06 ) ’
CO8 —™ =~ COS
_ n

where the propagation factor is suppressed because only angular
variations are of interest here, The constants n(non-integers in general)
specify the wedge angles; i.e,, WA = (2-n)w.

Similarly, the single diffracted wave from edge 2 is obtained as

—3 (5]
(3) Rpz(6) =L sin T e Jka cot °g 1 ,
n; nz T w-0
COS§ —— - COS8
n; ngz

where the factor e-jka cot o represents the phase of the incident wave
at edge 2 with respect to edge 1.

The direction 6 = 0 corresponds to the direction of the geometrical
optics rays. Although the individual rays Rpl and Rp2 are without limit
at 8= 0, the limit of (Rpl + Rp2) as 6 — 0 expresses the effect of the
geometrical optics rays.

Some of the singly diffracted rays from edge 1 may be reflected
from wedge 2 as seen in Fig. 1. The reflected rays are given by

(4) RRFL(O) = Rp)(-9), 6g < 8< % .

Equations (2) and (3) express the diffraction of the incident plane
wave by wedges 1 and 2, respectively. Equation (4) (the reflected wave)
expresses an interaction between the two wedges. Other interactions
which arise are the multiple diffractions between the edges. The singly
diffracted wave from edge 1 again diffracts from edge 2, resulting in a
doubly diffracted wave as shown in Fig. 2. The reflected wave and the
singly diffracted wave from edge 2 illuminate edge 1 giving rise to two
additional doubly diffracted waves. The doubly diffracted waves in turn
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Fig. 2. Doubly-diffracted rays.

produce triply diffracted waves and the process continues indefinitely

to higher and higher orders of diffraction. The magnitude of each order
of diffraction diminishes with increasing order. In general, double
diffraction must be included for reasonable results and triple- and higher-
order diffractions are often necessary. The Higher-Order Diffraction
Concept premits the inclusion of all orders of diffraction in a simple
manner.,

The doubly diffracted waves can be treated as the diffraction of
cylindrical waves because the singly diffracted waves behave as cylin-
drical waves radiating from the edges of the waveguide aperture. Thus
the doubly diffracted wave from edge 2 is given by

(5)  Rppa(® = Rp g [ve(h, m-6-6g) + vg(h, m-6+6g)] ,
where the illuminating cylindrical wave intensity from edge 1 is given by




However, the Higher-Order Diffraction Concept permits the determi-
nation of the total higher-order diffraction from edge 2 by using the
illumination of the total cylindrical wave from edge 1, The total
illumination from edge 1 may be expressed as

(7) R1G = Ry(-6g) »

where R](6) is the total diffracted wave from edge 1 as shown in Fig. 3.
Consequently, the total higher-order diffraction (i.e., second-order
and higher) from edge 2 is given by

(8) Rypz2(8) = Rig[ve(h, 7 - 0-6g) + Vg(h, - 8+6g)].

Thus the total diffracted wave from edge 2 is given by

(9) R2(9 = Rp2(8) + Ryp2(9) .

7777777777 777777 777 S L

Fig. 3. Total diffracted rays.



It should be noted that R)G is unknown at this point in the formulation,
whereas RD]G is known, The key feature of the Higher-Order Dif-
fraction Concept is that it allows Rjg and other unknown illuminating
rays to be determined from a set of simultaneous linear equations.
This aspect of the Higher-Order Diffraction Concept will be developed
at a subsequent point in the analysis.

Now consider the two doubly diffracted waves from edge 1. The
doubly diffracted wave caused by the singly diffracted ray,
(10) Rno
is given by
(11) Rpp1(8) = Rppdf vplh, 0+685) + vth, 2r+6-6,)] .
The double diffraction by the singly diffracted ray,
(12) Rpip = Rpy (-7/2),
is given by
(13) RpIRDIUO = RDlP[VB (Za. -:'Z-r- + 9) + vy (Za, EZE + 8)] .
The total illumination of edge 1 from edge 2 is given by

(14) Ry = Ry (7 -6g)

and the total illumination of edge 1 from the reflection of the diffracted
wave from edge 1 is given by

(15) Rip = Ry(-w/2) .




Thus the total higher-order diffraction from edge 1 is given by
(16) RypI(®) = R2G[vB(h, 6+6g) + vp(h, 27 +6- 6g)]

+ RlP[VB (Za, %-&- 9) +vp (Za, éz“- + 9)] .
Consequently the total diffraction from edge 1 is given by
(17) R1(®) = Rp1(6) + Rypy(6) .

The principal aspect of the Higher-Order Diffraction Concept
is that it permits the unknown illuminating rays Rjg, R2G, and Rijp
to be determined. Three simultaneous linear equations can be formu-
lated in terms of the three unknown rays by use of Egqs. (9) and (17).
Thus

(18) R1G = Rpig + Rag Vagl-%) + Rip Vip(-6g),
Rip = Rpip + R2g V2g(-w/2) + R1p Vip(-w/2) , and
R2G = Rpzg + Rig Vigl™ - %8)s

where the quantities V]G, Vip, and Vg are the unit wave diffractions
used in Eqs, (8) and (16). The simultaneous equations of (18) form a
set of three complex equations in three complex unknowns. This set
of equations is equivalent to six real equations in six real unknowns,

Upon determination of the unknown rays the total diffracted wave

from the aperture may be expressed as the superposition of the total
. diffracted waves from edges 1 and 2 plus the total reflected wave to yield

(19) R1(6) = Ry(6) + Rp(6) eJih cos(5+%g)

+ Rl(_g) e-jz ka sin 6g sin 0 .



The exponential factors refer each term to a common phase reference

at edge 1. Each term in Eq. (19) contributes to the radiation pattern
only in certain regions as follows:

(20) R;(9): -6g<6<mw - WAl,
Rz(6): m+ WA2 <0< - 6g, and
Ri(-6): +6g <6< w/2 .
Normally truncated waveguides (0g = 90°) must be treated some-

what differently because no reflected rays contribute to the radiation
pattern and

(21) Rijp = 0 for 6g = 90° ,

In this case there are only two unknown rays, RjG and R2G; and the
simultaneous equations reduce to

(22) g = 90°:
Rig = Rpig + R2Gg V2 (- w/2) and
Rag = R‘DZG + Ri1g V]_G(TT/Z) .

The total pattern for the Bg = 90° case is given by

(23) Bg = 90°:

Rp(9) = Ry(6) + Rp(0) e~Jk@ sin O,
where the appropriate regions for the respective terms are

(24) Ry(8): -m/2<6<m and

Rg(e): - <9<Tr/2.




The solution to the simultaneous equation of Eq. (22) is readily
obtained as

T
RpIG * Rp2G Vag (— '2‘)

(25) RIG =
m ™
wale) via ()
and
‘ ™
Rp2g * Rpig ViG (5)
(26) R2g =

1-Vag (‘ %) Vlc(-;-)

The values of the illuminating rays of Egs. (25) and (26) can also
be obtained by use of the summation of a geometric series. This techni-
que was described by Burke and Keller[5] for the thick rectangular edge.
By the process of iteration the illuminating ray from edge 1 can be
expressed as

(27) R = Rpig + Rpig VlG(ﬂ'/Z) VZG(-‘H'/Z)
+ RDIG[VlG('IT/Z) VZG(-1T/2)JZ + -
+ Rpag Vagl-1/2) + RpaalVagl-m/2)]1% vigin/2)

+ Rpag V2Gi-7/2) [Vagl-m/2) Vig(m/2)]2 + -== .

The sum of the geometrical progression which occurs in Eq. (27) can

be employed to obtain Eq. (25). Equation (26) may be derived in the same
manner, For cases in which there are more than two illuminating rays

it is necessary to use the Higher-Order Diffraction Concept to evaluate
each illuminating ray.

The process of expressing the interactions between two edges in
terms of a geometrical progression is known in scattering theory as the
Successive Scattering Procedure[6]. Moreover, the Higher-Order
Diffraction Concept was found to be an application of the Self-Consistent
Procedure used in scattering theory[6].



1II. COMPUTATIONS

In order to compute the radiation pattern from Eq. (19) the
simultaneous equations of Eq. (18) must be solved. Since, computations
are made on a digital computer a numerical method for solving simul-
taneous linear equations which are in complex form is desirable. The
Crout method[ 7] for solving simultaneous equations is quite suitable
for this purpose. The computer subroutine of Richmond[8], as presented
in Appendix II, employs the Crout method and is used to solve the simul-
taneous equations. The accuracy of results of the subroutine was tested
by substituting the solved values for the unknowns into the equations.

The accuracy of the sclutions to the simultaneous equations was found
to be excellent in all cases. The computer subroutine for computing
the diffraction function Vg(r, ¢) is given in Appendix I.

The wide variety of pattern shapes available from parallel-plate
waveguides is illustrated by Figs. 4 - 10, The patterns of Figs. 4 and
5 were also calculated by the iterative method of Refs. 2 and 3, in
which the first three orders of diffraction were included. It is evident
that the iterative method gives very good results for these cases.

The iterative method gives increasingly accurate results for
larger and larger guide widths. The accuracy decreases accordingly
for small guide width, 1In order to compare the iterative method with
the Higher-Order Diffraction method, patterns were computed by both
methods for very small guide widths. In Fig. 6 the patterns of a g =
90* guide with a guide width of a = 0,2\ are shown. The results of the
iterative method agree very closely except near the plane of the aperture.
The discontinuity in the pattern computed by the iterative method results
from not including the higher-order diffractions, Other comparisons of
the two methods are given in Figs. 7 and 8 for a 6g = 60° guide. As seen
from Fig. 7 the results of the two methods agree closely for a guide width
of a=0,3\., For a guide width of a = 0, 2\ the difference is more signifi-
cant, as shown in Fig. 8,

Some general aspects of computing patterns by edge diffraction
theory can be seen from observation of the figures. In Fig. 9 a discon-
tinuity occurs at 8= 180° as a result of the semi-infinite guide which ex-
tends in the 180°® direction. This type of discontinuity does not occur in
Fig. 4 for the normally truncated guide because of the symmetry of the
guide and its patterns. In Fig. 10 it is seen that the boundary conditions
for the 6g = 90° guide flush mounted to a ground plane are not satisfied
exactly because the slope of the pattern is not zero in the directions of
the ground plane surface. The reason for the non-zero slope is the

10
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assumption used in the application of edge diffraction theory that each
diffracted wave is the same as that for uniform incident wave. In the
guide of Fig. 10 the total wave from edge 1 illuminating edge 2 is approxi-
mated as the uniform wave of an isotropic line source. However, the
wave from edge 1 is not uniform, thus resulting in slight inaccuracy

near the ground plane. The same approximation applies to Fig. 5 but

the slope of the incident wave is not noticeable.

The edge-diffraction method for computing parallel-plate guide
patterns generally gives accurate results. This is indicated by the
comparison with measured patterns given in Refs. 2 and 3. The edge
diffraction method fails in some cases because of the basic assumption
that multiple diffractions are the same as the diffraction of an isotropic
line source.

The edge diffraction method will now be compared with conventional
methods of pattern calculation, The Kirchoff method assumes that the
total field in the plane of the aperture is equal to the incident field in the
aperture and is zero on the remaining surface of the aperture, and thus
gives the pattern as

1
sin('z ka sin 9) R
(28) lEx| = , -90° < 6 < 90

1 .
(E ka sin 8)

The approximation of the Kirchoff method is most accurate for the

ground plane case, i.e., WAl = 06g and WA2 = 7 - 6g. The pattern for

the guide geometry of Fig. 10 is also calculated by Eq. (28). As is
evident, the Kirchoff method is more accurate in this case because of

the limitation of the edge-diffraction method which was previously dis-
cussed., However, the Kirchoff method is limited in the general case

in that it is impractical to calculate fields behind the plane of the aperture.

°

The Wiener-Hopf technique may be applied to the case for which
Bg = 90® and WAl = WAZ2 = 0 and yields the exact solution for this case.
The Wiener-Hopf pattern is given by[9]

1
sin ('2' ka sin 9)

1 .
(—2- ka sin 9)

(29) |lEw! =

1
exp| 7 ka cos 6 .

18




The pattern for the guide geometry of Fig. 4 is also calculated
by Eq. (29). It is seen from Fig. 4 that the edge diffraction method
is quite accurate for this guide with a width of only 0,338\. The
Wiener-Hopf technique is practically limited to the special case of
the thin-walled, normally truncated guide.

IV. DISCUSSION

The formulation of a problem with the Higher-Order Diffraction
Concept is as simple as that necessary to include dcuble diffractions.
The use of the Higher-Order Diffraction Concept is somewhat more
lengthy than use of the first and second orders of diffractions in that
a set of simultaneous linear equations must be solved. However, this
is relatively simple with a digital cumputer which is usually necessary
to calculate diffraction solutions, Thus the Higher-Order Diffraction
concept provides the high accuracy of including many orders of multiple
diffractions for an insignificant increase in complexity of solving the
problem.

The Higher-Order Diffraction Concept can be applied to any two-
dimensional diffraction problem treated by edge-diffraction theory.
The analysis of any structure formed by superposition of wedges may
be treated in the same manner as the parallel-plate waveguides are
treated in this report. The total diffraction is composed of the singly
diffracted waves caused by the primary illumination, and the total
higher-order diffracted waves from each edge caused by the total
illuminating rays from all visible edges and visible images of edges.
The number of simultaneous equations is equal to the total number of
unknown illuminating rays. The computer subroutine of Appendix II
is applicable to any number of simultaneous equations,

The edge diffraction technique used in conjunction with the Higher-
Order Diffraction Concept does not give exact formulations of diffraction
solutions even though the results are generally quite accurate. The
limitation results from the fact that multiple diffractions are assumed
to be equivalent to diffraction by isotropic line sources. Although this
assumption is generally quite good, it fails to be accurate in some cases.
One case occurs in which the singly diffracted wave resulting from a
plane wave illuminates another edge. If the other edge is too near the
shadow boundary of the illuminating singly diffracted wave the assumption
of uniform illumination is inaccurate. The reason is that the diffracted
wave resulting from a plane wave has steep slopes near its shadow bound-
ary. Another case in which the assumption of uniform illumination fails
is for very small dimensions between edges where multiple diffractions

19



are computed. The assumption is generally good for dimensions larger
than a small fraction of a wavelength., Thus limitations of the edge dif-
fraction technique result from the assumption that diffraction is a local
edge effect and do not result from the Higher-Order Diffraction Concept.

V. CONCILUSIONS

The concept of ""Higher-Order Diffraction' is demonstrated by
its application to the TEM radiation patterns of parallel-plate waveguides.
This concept permits all orders of diffraction to be expressed in closed
form. Thus the computation of diffraction by structures compesed of
wedges may generally be computed accurately and simply.

The limitation on the accuracy of the solution obtained by edge
diffraction theory results from the assumption that multiple diffractions
are the same as the diffraction by isotropic line sources. This assump-
tion may not be valid in certain cases; e.g., when one edge is located
near the shadow boundary of a singly diffracted wave.

20




APPENDIX I

The Scatran computer subroutine for the calculation of the
diffraction function VB(r,¢) is presented in this Appendix. The
function Vg is calculated by either the Fresnel integral formulation of
Pauli or the cylindrical wave formulation[1]. The Fresnel integral is
computed by a highly accurate technique developed by Fleckner[10].
The cylindrical wave formulation was programmed by M. L. Tripp.

21
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DC THROUGH (END)s K=2¢142PRCVIDID (Lol b.exKE) =
SIGN = le -
PROVIDED (KeE oK /2%2)s SIGN = =~1e -
CONST = 1e/(K¥T361413326%41e27073H22)ePe2 =
= 2e - .
= e/ (2Kt ] e) -
= 81 -~
_.53 -
2D 4+ 5181 -

O unuv
c - -
=

1]

"

H
Z —
+
[

T TERM

"
Z
|

h

CoPeN=TN¥ (TN=1e)¥CONST¥70 =
~EB1%¥(le=eD/TN) =~

= 32 ¥ 572 -

UM + TEMP -

<
0

cmhnZ
1

2

NH N 4L+ Z Zn

W aoawn

o
w
—_—

5
1
2
2
PROVIDZD (o A35eTEMPeGeleeXe~8)s TRANSFELIK TS (TERM) =
T(K+1) = T(K)I+e318330989/50RTe(2e¥K+1 e ) ¥5IM¥XSION ~
END CONT INUEL ~
NORMAL EXIT -

(@]

» FUNCTION (C) = RFITSNe (ARG)Y -
‘ c -
EXTERNAL (T) -
DROVIDED (ARGel— e 7e¢83373163)e TRANGFEZR TO (LESS) -
‘ T1 = ARG#*e31832U8Y-eD -
f K = Ti =

T2 = < -

| PC = (T1-T2)/(TE+e3) -
| A = (Ti=T2)#3e1415926% -
C2 = -IDGe(A) -
f SIGN = le -
l MOV IDED (KeEeK/2%2)s SION = —le -
" C1 =2 eHTIOCHIDTLB/ (e XT 24 1e) -
‘ ‘32 = ‘-,.‘3 -
| 23 2z CI%¥SINe(A) -
C1 = C1#Cl -
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TERM

LESS

LOOP
DONE

TERM

END

S1 = 1e+C2 -

S2 = C3+C2*¥pC -~ )
SUM = S1 + B2%¥52 -

N = 1 -

N = N+ 1 =~

TN = N -~

B3 = -B2%¥(le—-eS5/TN) -

S3 = PCePeN¥C2+TN¥PCeP e (N=1 )X¥C3-TN#*#(TN~14¢)%¥C1%#S] -
TEMP = B3%S53 -
SUM = SUM + TEMP -

B2 = B3 -
st = s2 -
s2 = $3 -

PROVIDED (e ABSeTEMPeGaleaXe—-6)e TRANSFER TO (TERM) -
C = TI(K) + 318309389 /SART e (2e%T2+16 ) *¥SUMXSIGN -
NORMAL EXIT -

C = RFRSe (ARG) -

NORMAL EXIT -

END SUBPROGRAM -

FUNCTION (C) = RFRSe(X) -

H = SQRTe(2e¢%¥X/3e14195927) -

C = H =

DO THROUGH (LOOP)Ys L=1119eASe(tHH)eGoeloeeXe~7 —
HzH*(((Be=4 e ¥ ) XXXX )/ ((Ga¥ +1 e ) ¥ {(Pa*_ ) ¥(2e%XL—10))) =~
C = C + H -

CONT INUE -

NORMAL EXIT -

END SUBPROGRAM -

END SUBPROGRAM -~

SUBROUTINE () = UF3ETe (ARGMAX) -

DIMENSION (T(13Q)) -

KE = ARGMAX/3e¢14159265% -

T(2) = UFRSe (Ge 28318531 ) =~

DO THROUGH (END)s K=24¢ ! eKel Lo =

SIGN = —-le =
PROVIDED (KeEeK/2%2)es SIGN = le -
CONST = lea/(K¥3e414153426%5)
SJ = 2- -

Sl = le/K -

¢ = 51 -

Bl = —e5 ~

um ST+31%31] -

efPel -

1 -
N+1 -
N = N =
G2 = CePeN~TN*¥(TN=-1e)*CONST*5C =~
32 = ="l ¥ (le=eD/TN) =
TEMP = B32%S2 -
SUV = SUMHTEMP -~
5 = 91 -
51 = S$2 -
B1 = B2 -
PROVIDED (o ANSeTEMPeGeleaXe=8)s TRANSFER TO (TFERM) -
TIK+1) = T(K)I+)e3183)13989/50RT e (2aU*K)¥3UMKSIGN -
CONTINUE -~
ORMAL EXIT -~

1]

S
N
N
T

FUNCTION (S) = (JFRFSNe (ARGY -

EXTEIRNAL (T)Y -
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PROVIDED (ARGeLZeHelB8318HD4G)s TRANSFER (LESS) -~
Tl = ARG*#(431383N989 -

K = T1 - '

T2 = K =~

PC = (T1=-T2)Y/7T2 -

A = (T1=T2)*¥31415859265 -
CP2=-CCoe (A) -

SIGN = ~-le -

PROVIDED (KeFE oK /2%2)s SIGN = 16 -
Cl = 0e31830989/7T2 -

32 -e5 -

C3 = Cl*¥5INe(A) -

Cl = C1*C] -

ST = 1le+(C? -

S2 = C3+C2*PC -

QUM = S1 + R2¥32 -

i

N =1 -
TERV N = %8 + 1 -
TN = N -
B3 = =32%(le—-e5H/TN) -
SR = PCePaN¥C2+TN*¥P  aP e (=11 ¥CR3=TN#(TN=1,4) *C1 %] -
TEVP = B3#%S3 -

TUM = SUM + TEMP -
Hp = 33 -
S o= 52 -

52 = 53 -

PROVIUED (A% gT:MDeGeleeXe—-h)e TRANAFIIR T (TERM)

G = TULK)+ 03183 IHD/ QT (P o¥T2)*G JM*¥STIIN -
NORWMAL EXIT -
LESS S = JFRGe (ARG) =~
NCRNVAL ZXIT -
TND SURPROGRAM -
FUNCTION (S) = WUFRLe (ARG) -
H = 560RTe(2e*ARG/ 21419927 )¥¥0RG/ 36 ~
53 0= M o=
N THROUGH (LOCP)s L=1elsed Sel(id)eT el eeXe~7 —
H = FR¥(({]le=de* L )H¥ARGHARGI/((deH* L+ e )X (2e*l_+] e ¥ (2% _))) -
= G 4+ H -
L OOP CONT INUFE ~

NORMAL EXIT -
END SUBPROGRAM -
CND SURPRIGRAN -
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APPENDIX II

This Appendix gives the Scatran computer subroutine for solving
the set of three simultaneous complex equations given in Eq. (18).
The subroutine was programmed by Richmond[8] and employs the
Crout method for solving simultaneous linear equation[7]. The para-
meter IJK is the dimension vector of each equation and is usually
equal to N + 1,
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Je

Ul

Sy

S117

sSt118

si2z

RICHMOND CROUT METHOD PROGRAM &

) = SOLUTIONSs C = COEFSes N

Ci1 vl + C12 U2

1]

c21 vy + C22 vz

SUBROUTINE (U« CX)=S5SECMe (N

NN=N+1 -

[loL=TUK+1-

COMPLEX(CX(OeTJUK) e C (46201

DOTHROUGH(SY)sl=1alelelEe

DOTHAROUGH(SY )YeJ=1al e JelLFe

C(leu)=CX(lau)-

DOTAHROUGH(S118)el. =141

Ler=t-1-

DO THROUGH(S118)el=Loslos]e

Il=1+1~

DO THROUGH(S117)eK=19+1 eKe

ClIlalL)=Cllap)=Clleg)*C (K

ClLeilN=ClL el N)=C(LeK)*CH(

ClLelIy=ClLe Il /CLol)~

DO THROUGH(S123)eL=291 el o

I =NN-L -

I1=1+1-

NQOe OF EQSew

c12

ce3

o [ UK ) =

JL))-

NN-

NN+1 -

L.oeLE o N=

LE eN=-

LEeL L L~

L)~

Kell)=-

LEeN~

DO THROUGH({S122)sK=119e]1eKel EeN-

CUIsNNI=C AT +NN)=C(IsKIXCIKsNN)~-

sS123 CONT INUE -

COTHROUGH (SX)sLMN=19s1 +LMNoLEoN~

UILVYN)=C(LMNsNN) -
NORMALEX] T~

ENDSUBPROGRAM-
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